CHAPTER 10: MORE ON PHP FORMS
INTRODUCTION
(Not to be confused with “moron PHP forms.”() It’s time to expand your array of web programming tools and hopefully enhance your understanding of how the web works. If you haven’t worked with HTML forms before, then you will now find out how they allow you to order merchandise online, log in to your online bank, etc.

I want to give you an idea of where we are going for the rest of the semester. Your final semester project will be a simulated web site that will allow the user to find out what sort of merchandise your company has to sell. Then, the user will be asked to indicate what they are interested in, for example, DVD movies, games, CD’s of music, etc. That will be presented in the user’s browser as a web page, or more specifically, an HTML form.

When the user has indicated their desires, they will submit the form to your first PHP program. This program will examine the current offerings available in the appropriate category by opening and extracting data from a database. Next, the program will return the data to the user in another HTML form. After that, the user will “purchase” some of your stuff, which will be another form sent to the server. Another PHP program will process the order and send the user the purchase information, things like what they ordered, pricing, etc.

The author’s discussion of PHP Forms actually starts in Chapter 4, Section 4.2.11. (My course schedule asked you to skip that section earlier.) I guess the author thought it important to discuss form variables at such an early stage, but my approach was to ask you to delay working on that topic until now. Now, you are very ready to start working with form variables. The short discussion in Chapter 4 is not really essential to getting started. Chapter 10 covers everything you need to know.
Important notes. There are two methods for transmitting form data from the browser to the server, and several different ways to parse the data in your PHP program. In order to reduce the complexity of your reading, here are the ways we will do the job in this class.
Data transmission: use the POST method only. As the author describes on page 382, the POST method includes any form data in a header message and not in the URL, like the GET method. That means it has no limitation on the length of data transmitted; the data is not visible in the URL; and generally it’s a safer way to go. The only requirement this places on you, the programmer, is that you will need to specify the method of transmittal at the beginning of the form—not a real challenge!
Data retrieval: use the “Medium Style” as described in Section 10.3.6. We will use the extract() function to get all the form data into variables. Here is what the function call looks like:
extract ($_POST);
As you will see, then, all the form data will be in variables with the same name as the HTML form fields.

10.3.1 The register_globals Directive. Before we get into the combined discussion of creating HTML forms and processing them, I want to cover a topic “in the middle” of the discussion. You really don’t have to understand what the register_globals directive is all about right now. Just know that it’s now considered a security problem and it can cause conflicts in your program execution. So, as discussed by the author, this variable should have a value of Off in your php.ini file. You can read a very pointed discussion of the topic at this web site:

http://us3.php.net/manual/en/security.registerglobals.php
Just to make sure it is Off, go find your php.ini file right now and verify that. The php.ini file should be located in your PHP5 directory. (On my computer the path is: C:\Program Files\PHP5\php.ini.) The entry for this value looks like this:

register_globals = Off
If you find it On, just set it to Off.

HTML FORMS AND PHP PROCESSING

This will be a combination of several parts of the chapter in order to tie the two concepts of forms and PHP processing together.

What I will do here is briefly introduce the form input types that you will need to master for the course; and as each input type comes along, I’ll show some PHP to process the form data. Table 10.1 summarizes the form input types, but the text in no way offers a complete discussion of all the possibilities. You can certainly find much more in the way of explanation online.

Form tags. Let’s get our form started off, and ended. The <form> tag does that and allows you to specify some responsibilities. You want to name the PHP program that will process the form, as well as specify that the data is coming to the server as POST data.

<form action=“processform.php” method=“POST”>

</form>

Here I plan to use the script processform.php to do just that, and have told everyone involved that the data is coming via POST, not GET. Notice also that I have already included my ending tag for the form, just so I don’t forget it. Now, as I develop the various elements of the form in-between these tags, I can be certain there is a starting and an ending point!

Important note: if you are following along and plan to try this code out as you read, be careful about copying and pasting it. As is usual, Word is using curly quotes here anytime I need the quote character. The problem is that when you paste these quotes into your HTML code, the curly quotes may not be interpreted correctly: they are a weird ASCII value. And they may not be interpreted correctly in the HTML. You would be wise to retype them just to make sure.

Text field. Allows the user to input short entries, like name, address, etc. Let’s ask for the user’s name (new stuff in bold):
<form action=“processform.php” method=“POST”>

Please enter your name here:

<input type=text name="username" size=50 />

</form>

I prompted them with a simple boldface prompt. Then, I created a text box whose name in the PHP program later will be $username and made the box 50 characters wide.

Submit & Reset buttons. The next thing I will need is a submit button, sending the form along to the server. Let’s add that along with a reset button to clear the form.
<form action=“processform.php” method=“POST”>

Please enter your name here:

<input type=text name="username" size=50 />

<p /><input type="submit" value="Submit">

<input type="reset" value="Clear">

</form>

Besides the name text box, the form now has a submit button, with the word “Submit” in it and a reset button with the word “Clear” in it.

Now this is a form that you can actually play with. Create an HTML file using PHP Coder, type in this code (or copy and paste it), and save it in your htdocs folder with some recognizable filename ending in .HTML. Then, open it in your browser (make sure you are opening the localhost file, for example, http://localhost/simpleform.html) to see how it looks. You won’t be able to actuate it yet, since you don’t have a PHP script to process it. (But you could try anyway! Hit Submit and you’ll get a “blank stare” from your local server.)

Let’s start writing a PHP program and “grab” the user’s name as it comes flying in to the server. Remember that this script will have to be named processform.php for the server to find it. (For purposes of this class, just assume that all HTML forms and PHP scripts will be in the htdocs directory, as you have been getting used to. So, when the form specifies action=“processform.php”, that means “look in the localhost directory”, which is the htdocs directory.)
<?php

extract ($_POST);
//Now, the user’s name will be in $username

printf ("OK, %s, glad to meet you.\n", $username);
?>
The extract function pulls out the values from the HTML form and makes variables with the same name as the “name=” values in the form. So, that means that there should be a $username variable with the user’s name in it. Here all I do is print out the value of $username, which will be what the user typed into the form field. Go ahead, try this out and make sure you get it to work before going on.

Now, let’s talk a bit about “safe PHP programming.” What if the user hit the submit button without typing any name into the box? The PHP script would simply print a blank, which would probably not be good feedback. OK, <blank>, glad to meet you. Not good!

One way to tell if the user forgot to type in their name is to test the $username variable using the empty() function (introduced in Chapter 4, Section 4.2.10). The empty() function tells you if it’s TRUE that a string has no characters in it or FALSE if it does have a character or two. If it has no characters, then the user forgot to enter anything.
Let’s be real safe and test to see if the user has really entered a name.

<?php

extract ($_POST);
if (!empty($username))

printf ("OK, %s, glad to meet you.\n", $username);

else

printf ("Oops, it appears as if you forgot to enter your name.\n");
?>
I hope you recognize the use of the ! operator (the NOT operator). If the function empty() returns TRUE, then it is turned FALSE, and vice versa.

All right, let’s add some more elements to our form and process them. But first, let’s make it look a bit more like a form. Let’s add an HTML fieldset: it will draw a nice box around all the form’s parts. And just for grins let’s add a bit of color to the background.
<body bgcolor="lightyellow">
<form action=“processform.php” method=“POST”>

<fieldset><legend>Enter your information in the form below:</legend>

Please enter your name here:

<input type=text name="username" size=50 />

</fieldset>

<p /><input type="submit" value="Submit">

<input type="reset" value="Clear">

</form>

The fieldset will not include the submit button and the clear button. How’s that look and act now? Be sure to try it without entering a name, so you get the “oops” message displayed.
Radio buttons. These are typically used to list a number of options, from which the user can select only one. Let’s give the user of your form a chance to sound off a bit about the current course. We’ll present three choices to select from indicating how well they are doing in the course. (From now on, I will present only the new code. You can just insert it after the previous element—in this case after the text box asking for their name.

<p />

How well do you think you are doing in the course so far?

<input type="radio" name="rating" value="1" />Not so well

<input type="radio" name="rating" value="2" />Pretty darn good

<input type="radio" name="rating" value="3" />I'm acing it!

Note that each button has the same name: rating. I have decided to give each selection a simple value from 1 – 3, so in the program I can test the $rating variable as a number and provide some appropriate feedback.

Here’s how I will test the radio button selected, inside my PHP program, and just display a simple message for each of the ratings:
if ($rating == 1) printf ("So, you aren't doing that well?\n");

elseif ($rating == 2) printf ("So, you're doing fine!\n");

else printf ("Wow, glad to hear it!\n");
But what if your user forgets to make any selection at all? Let’s test to see for sure that one button was pressed, by testing the $rating variable for having a value. The isset() function, like the empty() function discussed earlier, is handy to let you see if a non-character variable has actually been set (does not have a NULL value or doesn’t even exist). I will surround the code above with a test of $rating:
//Test the variable $rating. If the user didn’t select any button, display the “else” message

if (isset($rating))

{

 if ($rating == 1) printf ("So, you aren't doing that well?\n");

 elseif ($rating == 2) printf ("So, you're doing fine!\n");

 else printf ("Wow, glad to hear it!\n");

}

else printf ("No rating was received.\n");

Select field (popup menu or dropdown menu). This is another way to give the user a set of choices. Unlike the radio buttons, however, the user is allowed to select multiple values. Here, though, we will allow only one choice.
Let’s ask your “user” what they like most about the course so far. (Sure, go ahead and give them an option of “Nothing.”() Here is a dropdown menu with four possible selections:

Select what you like most about this course:

<select name="likemost">

<option selected value="Textbook">Textbook</option>

<option value="PHP Language">PHP Language</option>

<option value="Studying online">Studying online</option>

<option value="Nothing">Nothing</option>

</select>
I have boldfaced the word “selected” to indicate that “Textbook” will be the default value for the field likemost. Here is a simple output statement for the PHP script to display the user’s choice:
printf ("OK, %s, so you like %s the best in this course?\n",

 $username, $likemost);
(Although the English does not necessarily work out with all four possibilities!)

Checkbox. This form input presents a bit more of a challenge. The avowed purpose for a list of checkboxes is to allow the user to pick multiple items from a list. You accomplish this by giving all the items the same name and by making the name of the item an array.
(Addition to the HTML form)
What other topics would you like to see covered in a course like this one?

<input type="checkbox" name="topics[]"

value="2-dim arrays" />2-dim arrays

<input type="checkbox" name="topics[]"

value="HTML Tables" />HTML Tables

<input type="checkbox" name="topics[]"

value="PHP Functions" />PHP Functions

<input type="checkbox" name="topics[]"

value="File Management" />File Management

<input type="checkbox" name="topics[]"

value="Regular Expressions" />Regular Expressions
Note: here, as well as in the Select field earlier, all the values for the items match the text that is actually displayed in the form. For example, I have used value="HTML Tables", and then the actual text HTML Tables. That’s not mandatory. In fact, it can become tedious and risky. Moron, I mean, more on that in a moment. (
Now, in the PHP program we can expect to see an array called $topics[]. You can process $topics[] like any associative array, although the keys will simply be numbers and perhaps not all that important: it is the values you are after. Every box that the user checked will have its associated value in the array.
Here is a small snippet of code to display each of the values for the checkboxes that the user checked:

printf ("Here are the areas that you would like to see covered also:\n");

foreach ($topics as $value)

{

printf ("%s\n", $value);

}
Note the simpler syntax for the foreach loop: since I really don’t care about the keys, I don’t have to “single them out” by coding $key => $value. The foreach loop still gives me access to all the values, one at a time.

Now, every box that was checked in the form will have its associated value displayed. For instance, if the user checks the first and the last boxes, this code will display:
Here are the areas that you would like to see covered also:

2-dim arrays

Regular Expressions

With checkboxes it is also a good idea to be careful and test to see if no boxes were checked at all. If for no other reason, your output should probably be a bit different if the user skipped all of the options. The easiest way to test for any selections is to test to see if the array for the checkboxes exists at all. If no boxes were checked, the array will not be around.

You can use the is_array() function to test for the existence of the array. Here is a simple change to the code above which starts out by testing the array and skipping the “normal” output if no boxes were checked:

if (is_array($topics))

{

 printf ("Here are the areas that you would like to see covered also:\n");

 foreach ($topics as $key=>$value)

 {

 printf ("%s\n", $value);

 }

}

else printf ("No boxes were checked!\n");
Now, let’s go back to the note from earlier, whether or not to use long text selections as the actual values in the HTML form. If the text you are displaying is quite long, it may be wise to “code” the individual values with simple numbers or characters.

For example, say you have a list of checkboxes that show very long choices, like long names. You would certainly want to list each name completely, but probably don’t want to use that long name as its value. It might be better to limit the size of the actual value. Let’s take a very short example. Say you have just two choices like this:

Which of these artists should be invited to play at TTC? Select as many as you like!

<input type="checkbox" name="artists[]"

value="1" />Matchbox Twenty

<input type="checkbox" name=" artists[]"

value="2" />Brooks & Dunn
Here we have given each choice a simple value instead of using the entire name. So, when it comes time to check for which artist was selected, we just test for simple codes like ‘1’ and ‘2’, instead of checking for long names. Typing those long names in if statements might lead to frustrating syntax errors, and who needs any more of those?!

That finishes this addendum. There is certainly much more that you can learn about HTML forms and PHP scripts to process them. But this will get you off to a good start and ready to handle the form processing we will do in the class. Now, don’t you have an assignment to get done?

End of Addendum

Page 8 of 8

